Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants.

نویسندگان

  • Yves Barrière
  • John Ralph
  • Valérie Méchin
  • Sabine Guillaumie
  • John H Grabber
  • Odile Argillier
  • Brigitte Chabbert
  • Catherine Lapierre
چکیده

The brown-midrib mutants of maize have a reddish-brown pigmentation of the leaf midrib and stalk pith, associated with lignified tissues. These mutants progressively became models for lignification genetics and biochemical studies in maize and grasses. Comparisons at silage maturity of bm1, bm2, bm3, bm4 plants highlighted their reduced lignin, but also illustrated the biochemical specificities of each mutant in p-coumarate, ferulate ester and etherified ferulate content, or syringyl/guaiacyl monomer ratio after thioacidolysis. Based on the current knowledge of the lignin pathway, and based on presently developed data and discussions, C3H and CCoAOMT activities are probably major hubs in controlling cell-wall lignification (and digestibility). It is also likely that ferulates arise via the CCoAOMT pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic and molecular basis of grass cell-wall biosynthesis and degradability. III. Towards a forage grass ideotype.

Lignification of cell walls is the major factor controlling the digestibility of forage grasses. Thus far, from QTL analysis, about 15 locations involved in cell-wall lignification or digestibility have been identified in the maize genome, many of which colocalise with QTLs involved in corn borer susceptibility. Genetic diversity for enhancing cell-wall digestibility in maize must be identified...

متن کامل

Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions.

Lignification limits grass cell-wall digestion by herbivores. Lignification is spatially and temporally regulated, and lignin characteristics differ between cell walls, plant tissues, and plant parts. Grass lignins are anchored within walls by ferulate and diferulate cross-links, p-coumarate cyclodimers, and possibly benzyl ester and ether cross-links. Cell-wall degradability is regulated by li...

متن کامل

Identification and Characterization of Four Missense Mutations in <i>Brown midrib</i> 12 (<i>Bmr12</i>), the Caffeic <i>O</i>-Methyltranferase (COMT) of Sorghum

Modifying lignin content and composition are targets to improve bioenergy crops for cellulosic conversion to biofuels. In sorghum and other C4 grasses, the brown midrib mutants have been shown to reduce lignin content and alter its composition. Bmr12 encodes the sorghum caffeic O-methyltransferase, which catalyzes the penultimate step in monolignol biosynthesis. From an EMS-mutagenized TILLING ...

متن کامل

Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues

Brown midrib mutants have been isolated in maize (Zea mays), sorghum (Sorghum bicolor) and pearl millet (Pennisetum glaucum) arising by either spontaneous or chemical mutagenesis. The characteristic brown coloration of the leaf mid veins is associated with reduced lignin content and altered lignin composition, traits useful to improve forage digestibility for livestock. Brown midrib phenotype i...

متن کامل

Phenotypic plasticity in cell walls of maize brown midrib mutants is limited by lignin composition

The hydrophobic cell wall polymer lignin is deposited in specialized cells to make them impermeable to water and prevent cell collapse as negative pressure or gravitational force is exerted. The variation in lignin subunit composition that exists among different species, and among different tissues within the same species suggests that lignin subunit composition varies depending on its precise ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comptes rendus biologies

دوره 327 9-10  شماره 

صفحات  -

تاریخ انتشار 2004